Curved Waveguide-Based Nuclear Fission for Small, Lightweight Reactors

Robert Coker
NASA/MSFC/ES22
Gabriel Putnam
APL/ESSSA/MSFC/ER42

Executive Summary

 Goal: Small, lightweight fission reactor suitable for use in deep space applications (e.g., power supply, propulsion, etc.)

Primary Innovation

- Capture and reuse free neutrons to sustain and/or accelerate fission.
- Accomplished using grazing incidence, layered super-mirror.
- No similar method of neutron capture and reuse has been disclosed.

Basic Concept

- Fabricate highly curved, neutron super-mirrors using known methods of Ni-Ti layering.
- Arrange mirrors around radioactive material to maximize entrapped area of source.
- Use whispering gallery behavior of mirrors and shallow incidence angle reflections to capture neutrons and return them to source material to sustain fission.

Normal Reactor Losses

- Escaping neutrons absorbed / partially reflected in nearby shielding material.
- Neutrons beta decay without reacting.

Proposed Design

- Neutrons captured by grazing optics and channeled back to fissile material.
- Lowers rate of neutron escape from material.
- Increases neutrons available to sustain the chain-reaction.
- Effectively acts as shielding.

Ideal System Limit

- All neutrons perfectly captured and reused instantaneously
- Required fissile mass approaches zero.
- Ignores issues of emitted vs usable energies
- Ignores issue of producing useful energy

- Fundamental principles are well grounded in other wave-like phenomena
 - Whispering galleries in acoustics.
 - St. Pauls, Gul Gumbaz, Temple of Heaven
 - Ellipsoid Reflectors
 - Optical ring resonators

Optical Whispering Gallery Modes within a Glass Sphere, NASA/JPL

Whispering Gallery Effect at St. Paul's

Optical Ring Resonator

Optical Ring Resonator Modes

- Neutron whispering gallery states recently demonstrated
 - Nature Physics, 2008 (ILL, Grenoble)
 - Small angle turning of beam
 - Ultra-cold to cold neutrons
- Shows possibility for long-lived neutron quantum states at thermal and higher energies.
- Present neutron storage devices require large superconducting magnets and cold traps.
- Need a geometry to store and then deliver neutrons.

Demonstration of Neutron Whispering Gallery States, Nature Physics, 2008

Grazing Incidence Thermal Neutron Guides

- Well known tool for directing neutrons from a source (such as a reactor core) to more accessible locations.
- Under small incidence angles, achieve nearly lossless neutron transport.
- Interiors are plated with nickel or alternating layers of nickel and titanium.
- Layering has achieved grazing angles four times as steep as nickel alone.
- Operates with similar reflectivities as X-rays
 - Similar momenta and wavelengths (~few Å)
 - Allows leverage of expertise for telescope optics

Common Neutron Guides

Example of Curved Grazing Incidence Mirror

Existing NASA Investments

- Manufacturing / IP
 - Thin film metal deposition technologies and facilities
 - Electroplating baths
 - Vapor deposition systems
 - Largely unused in many cases
 - Waveguide and support structure fabrication
 - Rapid prototyping facilities at numerous centers
 - X-ray source, imaging, and testing facilities
 - Testing facilities developed for telescope optics and NDE.
 - Existing patents for grazing incidence optics
- Existing NASA Partnerships (Primarily Science Dir.)
 - Partnerships with neutron sources (MIT, Oak Ridge)
 - Partnerships with inexpensive optics fabrication shops (Harvard Smithsonian)
- Much of the infrastructure needed for development of this new technology already exists within NASA or partners.

Projected Milestones

- Develop design for easily fabricated, supermirror waveguide testing assembly
 - Considering flat panels bent into final shape
 - Initial ring evolving to more efficient /complicated geometries
- Demonstrate 180-360 degree neutron turning
 - Measure output states relative to inputs
 - Evaluate impact of quantum effects
 - Initially sub-thermal neutrons with low-energy (desktop) source
- Demonstrate turning for higher energy neutrons
 - Thermal and fast neutrons typical of fission
 - Likely require future collaboration with a DOE facility.
- Demonstrate turning with radioactive material (DOE)
- Demonstrate fission with radioactive material (DOE)

Potential Issues

- Mismatch of emitted to useful neutrons
 - Fission emits Max-Boltz distribution from 0-14 MeV
 - Common fuels rarely react (have a small cross section) to fast (~1 MeV) neutrons (ex: U-235, P-239)
 - Layering may also make guide wavelength sensitive.
 - Probably requires a moderator to increase cross section.
 - Moderator also helps with next issue.

Final reactor size

- Even 4x turning angle is only ~0.7 deg. for thermal neutrons.
- Significantly less for fast (1 MeV) neutrons.
- Size of thermal reactor is reasonable (~0.5-1.0 m)
- Fast version is enormous.

Safety

- Initial design has no natural damping mechanism.
- Normal reactors spread the fuel as they heat up.
- May need active control to stop runaway (or clever design)

Alignment & Value

Value

- High energy density, low mass power source
- Potential for sustaining fission with a fraction of normal critical mass.
- Broaden range of fuels due to reduced release, absorption, and non-fission rates.
- Meets national needs for highly efficient, clean energy sources.
- Improves use of low grade or partially depleted fissile materials.
- Reduces national stockpiles and waste.

Aligned Subject Areas

- Advanced in-space propulsion
 - Source of secondary energy for high impulse electric.
 - Applicable for decadal study missions using probes to the heliosphere.

In-space habitation

- Larger number of power intensive nodes used for the same habitation system.
- Particularly useful for Deep Space Habitat where solar power is minimal.

Landers / Sample Return

- Power for drilling polar regions of Mars, and permanent shadow regions of moon.
- Missions beyond Mars require nuclear power because sunlight is too weak.
- Limited # of radioisotope systems is constraint on missions to outer solar system.
- Letters of interest from planetary decadal survey authors.

X-ray telescope

- Tech for neutron super-mirrors is directly applicable to fabrication of x-ray optics.
- Letters of interest from x-ray telescope scientists

Questions?

